
Separated Antecedent and Consequent Learning for Takagi-Sugeno
Fuzzy Systems

János Botzheim, Edwin Lughofer, Erich Peter Klement, László T. Kóczy, Tamás (Tom) D. Gedeon

Abstract— In this paper a new algorithm for the learning
of Takagi-Sugeno fuzzy systems is introduced. In the algorithm
different learning techniques are applied for the antecedent and
the consequent parameters of the fuzzy system. We propose a
hybrid method for the antecedent parameters learning based
on the combination of the Bacterial Evolutionary Algorithm
(BEA) and the Levenberg-Marquardt (LM) method. For the
linear parameters in fuzzy systems appearing in the rule
consequents the Least Squares (LS) and the Recursive Least
Squares (RLS) techniques are applied, which will lead to a
global optimal solution of linear parameter vectors in the
least squares sense. Therefore a better performance can be
guaranteed than with a complete learning by BEA and LM.
The paper is concluded by evaluation results based on high-
dimensional test data. These evaluation results compare the
new method with some conventional fuzzy training methods
with respect to approximation accuracy and model complexity.

Index Terms— bacterial evolutionary algorithm, Levenberg-
Marquardt method, Takagi-Sugeno fuzzy systems, (recursive)
least squares

I. INTRODUCTION

One of the crucial problems of fuzzy rule based modelling
is how to find an optimal or at least a quasi-optimal rule
base for a certain system. In most applications there is
no human expert available, thus some automatic method to
determine the fuzzy rule base must be deployed. Some of
these methods inspired by evolutionary processes can be
found in nature. The Bacterial Evolutionary Algorithm (BEA)
[1] [2] is one of the most recent approaches in this field,
other methods include constrained optimization techniques
[3] or clustering methods [4]. Apart from these methods,
in the area of neural networks there are training algorithms
known and these could be applied to fuzzy systems as well.
They prove to be useful when there are only quantitative
data available. Neural networks can learn these data and
have the capability to generalize. In training, the objective
is to tune the membership functions in the fuzzy system so
that the system approximates a desired dependency between
some input and output variables in a quite accurate way.

János Botzheim is with the Department of Telecommunication and Media
Informatics, Budapest University of Technology and Economics, Hungary
& Dept. of Computer Science, The Australian National University (email:
botzheim@tmit.bme.hu)

Edwin Lughofer and Erich Peter Klement are with the Department of
Knowledge-based Mathematical Systems, Johannes Kepler University of
Linz, A-4040 Linz, Austria (e-mail: {edwin.lughofer,ep.klement}@jku.at).

László T. Kóczy is with the Department of Telecommunication and
Media Informatics, Budapest University of Technology and Economics &
Széchenyi István University, Győr, Hungary (email: koczy@tmit.bme.hu).

Tamás (Tom) D. Gedeon is with the Dept. of Computer Science, The
Australian National University (email: tom.gedeon@anu.edu.au)

For this task, the Levenberg-Marquardt method [5] [6] [7]
was proposed, which is a gradient-based training algorithm.
The gradient-based algorithms are local searchers, thus, these
methods often find only the local optimum. However, they
can be used to improve the performance of the evolutionary
algorithm, which may find the global optimum with sufficient
precision in this way. The combination of the bacterial and
the Levenberg-Marquardt technique was introduced in [8].
In that paper, the Mamdani fuzzy system was used for
system modelling. Beside this model, the Takagi-Sugeno
fuzzy systems are also widely used, as they possess some ad-
vantages compared with the Mamdani approach for instance,
the universal approximation property [9], a fast inference
mechanism as defuzzification is not needed and linear hyper-
planes as consequent functions, entailing well interpretable
insight for local control behaviors. Because the structure
of the parameters is different in the antecedent and in the
consequent parts, different methods can be applied for the
two kinds of parameters. We propose the combination of
the bacterial approach and the Levenberg-Marquardt method
for the learning of the nonlinear antecedents’ parameters,
and least-square techniques for the linear rule consequents’
parameters as shown in Figure 1. The latter is applied due to
the fact that it delivers a global optimum of linear parameters
in the least squares sense and hence is favorable among
algorithms which can be stuck in local minima.

The paper is organized as follows. Section 2 describes
the structure of the fuzzy system and explains our goals.
The role of the bacterial evolutionary algorithm is described
in Section 3. Section 4 presents the antecedent learning,
while the consequent learning is introduced in Section 5.
Simulation results are shown in Section 6. Section 7 draws
some conclusions.

II. PROBLEM STATEMENT

A Takagi-Sugeno fuzzy system with multiple input vari-
ables (x1, ..., xp) and a single output variable y can be
generally defined in the following way:

f̂(�x) = ŷ =
R∑

i=1

liΨi(�x) (1)

where

Ψi(�x) =
µi(�x)∑R

j=1 µj(�x)
(2)

0-7803-9489-5/06/$20.00/©2006 IEEE

2006 IEEE International Conference on Fuzzy Systems
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

2263

are called normalized membership functions, which normal-
ize the degrees of rule fulfillment by using a t-norm, i.e.

µi(�x) =
p

T
j=1

µij(xj) (3)

where xj is the j-th component in current data vector,
hence reflecting the value of the j-th variable and µij the
membership degree of xj to the fuzzy set describing the j-
th premise part of the i-th rule. Of course, the j-th premise
part always belongs to the j-th dimension, for don’t care parts
µij(xj) is simply set to 1. The symbol T denotes a t-norm
in general. The li’s are the so-called consequent functions of
the R rules and are defined by:

li = wi0 + wi1x1 + wi2x2 + ... + wipxp (4)

Arbitrary types of fuzzy sets can be chosen depending on
the special task and behaviour of the fuzzy system. A widely
used fuzzy set type are the Gaussian functions defined by:

µij(xj) = e
− 1

2
(xj−cij)2

σ2
ij

where cij denotes the center and σ2
ij denotes the variance

of the Gaussian function appearing in the j-th premise part
of the i-th rule. The product t-norm together with Gaussian
functions leads to some favorable properties, namely steady
differentiable models, equivalency to radial basis function
neural networks [10], [11], favorable interpolation properties
due to infinite support and an easy extraction of the param-
eters for the Gaussian fuzzy sets (which is for instance not
the case for sigmoidal functions, which also possess infinite
support). However, due to its wide popularity trapezoidal
fuzzy sets together with the minimum t-norm will also be
used for all learning schemes and evaluation tests in the
subsequent sections. These fuzzy sets are defined in the
following way:

µij(xj) =

xj−aij

bij−aij
if aij < xj < bij

1 if bij ≤ xj < cij
dij−xj

dij−cij
if cij ≤ xj < dij

0 otherwise

where for the breakpoints the equational chain aij ≤ bij ≤
cij ≤ dij holds. A comparison between these two choices
of fuzzy set/t-norm connections will be also carried out in
Section VI.

The goal is now to train non-linear antecedent parameters
as well as linear consequent parameters in a hybrid and iter-
ative manner, in order to gain good approximation accuracy
with reasonable model complexity. The proposed learning
scheme is demonstrated in Figure 1, whose components
together with their role will be described in detail in the
subsequent sections. Here it should be noticed that within
the initialization component only the antecedent parameters
of the fuzzy systems are initialized, i.e. in order to start
the antecedent learning scheme, the consequent parameters
have to be trained for this initial setting. This is because

Bacterial mutation

Consequent Learning

Levenberg-Marquardt

method

Initialization

Gene transfer

Stop condition

Consequent Learning

Antecedent Learning

Fig. 1. Learning strategy by iterative hybrid training of antecedent and
consequent parameters

in the Bacterial Evolutionary Algorithm and Levenberg-
Marquardt method (which both represent the complete an-
tecedent learning part) the consequent parameters are used
for the evaluation of the optimization function as will be
demonstrated in Section IV. After the stopping criterion is
fulfilled, consequent learning is carried out once more, as
an eventual last change in the antecedent parts should be
compensated. This learning order is a well-known favorable
one, no matter if it is applied for batch [12] or incremental
learning [13]. The stopping criterion is reached, if the best
fitted individual has a smaller fitness value than a pre-defined
ε or the maximum number of generations Ngen is reached.
The fitness value is calculated through an appropriate error
measure defined as fitness function. An appropriate choice
of an error measure will be discussed in subsection IV-C.

III. INITIALIZATION

There are various successful evolutionary optimization
algorithms known from the literature. The advantage of
these algorithms is their ability to solve and quasi-optimize
problems with non-linear, high-dimensional, multimodal, and
discontinuous character. The original genetic algorithm (GA)
was developed by Holland [14] and based on the process of
evolution of biological organisms. These processes can be
easily applied in optimization problems where one individual
corresponds to one possible solution of the problem. A more
recent evolutionary technique is called bacterial evolutionary
algorithm [1] [2], based on the microbial evolution phe-
nomenon. Bacteria can transfer genes to other bacteria. This

2264

a31=

4.4

b31=

4.8

c31=

5.1

d31=

5.6

a32=

1.3

b32=

1.4

c32=

1.9

d32=

2.3

31 32

Ant. 1 Ant. 2 Ant. 3 Ant. 4 Ant. R…a.

Ant. 1 Ant. 2 Ant. 3 Ant. 4 Ant. R…

c31=4.7
31=1.2

31 32

c32=1.7
32=0.9

b.

Fig. 2. Encoding scheme for nonlinear antecedent parameters in a Takagi-
Sugeno fuzzy system

mechanism is used in the bacterial mutation and in the gene
transfer operation. For the bacterial algorithm, the first step is
to discover how the problem can be encoded in a bacterium
(chromosome). Our task is to find the optimal fuzzy rule base
for a pattern set. Thus, the parameters of the fuzzy rules must
be encoded in the bacterium. The parameters of the rules’
antecedent parts are the center and widths of the Gaussian
fuzzy sets, respectively the breakpoints of the trapezoids.
For example, the encoding method of a fuzzy system with
two inputs and one output can be seen in Figure 2, where
the upper image demonstrates the trapezoidal and the lower
image the Gaussian case. As the consequent parameters are
estimated by least squares approaches, see Section V, they
are not encoded in the bacteria.

Before starting the antecedent learning scheme as demon-
strated in Figure 1, the initial bacteria population is created.
The population consists of Nind chromosomes (bacteria),
whereas the number of rules in the ith chromosome is R(i).
These two parameters have to be set in advance and have to
be adjusted to the specific problem which should be solved in
a trial and error phase. However, there exists some guidelines
for an appropriate size of a population in GAs. Note that in
this paper R(i) = R(j) for all i and j, so just chromosomes
with a fixed length are considered. Increasing the parameter
R(i) usually leads to more accurate models with respect to
the error on the training data, but causes overfitting effects on
fresh test data. This is also the reason why an extended error
measure is used as fitness function, see Section IV-C. In total,
p

∑Nind

i=1 R(i) membership functions are created, where p is
the number of input variables in the given problem, and each
membership function has either two (Gaussian case) or four
(trapezoidal case) parameters. In the case of trapezoidal fuzzy
sets a reliable initialization would be to start with a Ruspini
partition [15] of fuzzy sets or at least a partition which

ensures overlapping between every two adjacent fuzzy sets.
This is to avoid holes between fuzzy sets and undefined input
states, which improves the process security in an industrial
application. It should be noticed that in the case of fuzzy sets
with infinite support, for instance Gaussian sets, an overlap
is always guaranteed, hence a randomization of the first
partition is possible without violating the coverage property.

IV. ANTECEDENT LEARNING

A. Bacterial Mutation

The bacterial mutation is applied to each chromosome.
First, Nclones clones of the rule base are generated. Then
a part of the chromosome is randomly selected and the
parameters of this selected part are randomly changed in
each clone (mutation). Next all the clones and the original
bacterium are evaluated by an error criterion. The best indi-
vidual transfers the mutated part into the other individuals.
This cycle is repeated for the remaining parts, until all parts
of the chromosome have been mutated and tested. At the
end the best rule base is kept and the remaining Nclones are
discharged. It is an important question to decide the length
of chromosome (how many rules) to mutate at one time,
and what is the degree of the mutation (expressed as the
relative size in terms of the interval). This approach allows
both selecting more than one membership function and fine-
tuning. If selecting more than one membership function is
allowed then the local minima in the optimization process
can be avoided.

B. Gene Transfer

The gene transfer operation allows the recombination of
genetic information between two bacteria. First the popula-
tion must be divided into two halves. The better bacteria
are called the superior half, the other bacteria are called
the inferior half. One bacterium is randomly chosen from
the superior half, this will be the source bacterium, and
another is randomly chosen from the inferior half, this will
be the destination bacterium. A ”good” part from the source
bacterium is chosen and this part will overwrite a ”not-so-
good” part of the destination bacterium. A good part can
be a fuzzy rule with a high degree of activation value. The
activation value of a fuzzy rule can be calculated for example:

v̄i =
1
N

N∑
k=1

v
(k)
i (5)

where v̄i is the mean activation value of the i-th rule, v
(k)
i

is the activation value of the i-th rule for the k-th pattern,
N is the number of patterns. So the best part of the source
bacterium is the rule which has the greatest mean activation
value. This cycle is repeated for Ninf times, where Ninf is
the number of ”infections” per generation.

C. Fitness Value Calculation

The fitness value calculation plays a central role for se-
lecting the best individuals for gene transfer and the winning
individual among the clones in the bacterial mutation. As a

2265

fitting method typically adapts to the training data and hence
mean root squared error (MSE) on the training data alone
is an overly optimistic estimate of the generalized prediction
error, an optimism term is added to the MSE [16], obtaining
the so-called in-sample error as fitness function:

Fit = Errin =
1
N

N∑
k=1

(ŷk−yk)2+
2
N

N∑
k=1

Cov(ŷk, yk) (6)

where Cov(ŷk, yk) = (ŷk− ¯̂y)(yk− ȳ) with ¯̂y = 1
N

∑N
k=1 ŷk

and ȳ = 1
N

∑N
k=1 yk denotes the covariance between all

measured and estimated output values over the training set.
In Section VI we demonstrate the impact of the choice of
the fitness function for individuum selection.

D. Levenberg-Marquardt

After bacterial operations, the Levenberg-Marquardt algo-
rithm [5] is applied for optimization the antecedent fuzzy
sets in the fuzzy rule base. In this method a minimization
criterion has to be employed, that is related to the quality of
the fitting. The training criterion that will be employed is the
usual Mean Squared Error (MSE):

Ω =
‖e(k)‖2

N
=

1
N

N∑
k=1

(ŷk − yk)2 (7)

where ŷ stands for the estimated output vector, y for the
measured output vector, e for the error vector and N the
number of training samples. This is a feasible choice here, as
Levenberg-Marquardt only changes the positions and widths
of the already obtained fuzzy sets for steering the fuzzy
systems in the actual population towards the nearest local
and global minima. The most used method to minimize (7) is
the Error-Back-Propagation (BP) [17] algorithm, which is a
steepest descent algorithm. The BP algorithm is a first-order
method as it only uses derivatives of the first order. If no
line-search is used, then it has no guarantee of convergence
and the convergence rate obtained is usually very slow. If a
second-order method is to be employed, the best to use is the
Levenberg-Marquardt (LM) algorithm [6], which explicitly
exploits the underlying structure (sum-of-squares) of the
optimization problem on hand. Denoting by J the Jacobian
matrix:

J [k] =
∂ŷ(x(m))[k]

∂par[k]
(8)

where the vector par contains all membership functions’
parameters of the antecedents, x(m) denotes the mth data
point in the training matrix and k is the iteration variable. The
derivatives after the non-linear parameters are the following

for the Gaussian case with product t-norm:

∂ŷ

∂ckl
=

R∑
i=1

e
− 1

2

∑ p
j=1

(xj−cij)2

σ2
ij [(wk0 − wi0) + ... + (wkp − wip)xp] .

e
− 1

2

∑ p
j=1

(xj−ckj)2

σ2
kj (xl − ckl)

σ2
kl

(∑R
i=1 e

− 1
2

∑ p
j=1

(xj−cij)2

σ2
ij

)2

∂ŷ

∂σkl
=

R∑
i=1

e
− 1

2

∑ p
j=1

(xj−cij)2

σ2
ij [(wk0 − wi0) + ... + (wkp − wip)xp] .

e
− 1

2

∑ p
j=1

(xj−ckj)2

σ2
kj (xl − ckl)2

σ3
kl

(∑R
i=1 e

− 1
2

∑ p
j=1

(xj−cij)2

σ2
ij

)2

For the trapezoidal fuzzy sets in connection with minimum
t-norm the following derivatives are obtained if µkl =
minp

j=1 µkj(xj):

∂ŷ

∂parkl
=

∂µkl

∂parkl
.∑R

i=1 minp
j=1 (µij(xj) [(wk0 − wi0) + ... + (wkp − wip)xp])(∑R

i=1 minp
j=1 µij(xj)

)2

with par = {a; b; c; d} and

∂µkl

∂akl
=

xl − bkl

(bkl − akl)2
if akl ≤ xl ≤ bkl otherwise 0

∂µkl

∂bkl
=

akl − xl

(bkl − akl)2
if akl ≤ xl ≤ bkl otherwise 0

∂µkl

∂ckl
=

dkl − xl

(dkl − ckl)2
if ckl ≤ xl ≤ dkl otherwise 0

∂µkl

∂dkl
=

xl − ckl

(dkl − ckl)2
if ckl ≤ xl ≤ dkl otherwise 0

If µkl �= minp
j=1 µkj(xj), then all derivatives are 0.

With these definitions, the LM update is given as the
solution of

(JT [k]J [k] + αI)s[k] = −JT [k]e[k] (9)

where s[k] = par[k] − par[k − 1] denotes the parameter
change in the k iteration step and α the regularization param-
eter, which controls both, the search direction and the mag-
nitude of the update. The search direction varies between the
Gauss-Newton direction and the steepest direction, according
to the value of α. This is dependent on how well the actual
criterion agrees with a quadratic function in a particular
neighborhood. The good results presented by the LM method

2266

(compared with other second-order methods such as the
quasi-Newton and conjugate gradient methods) are due to
the explicit exploitation of the underlying characteristics of
the optimization problem (a sum-of-square of errors) by the
training algorithm. Notice that (9) can be recast as:

s[k] = −
[

J [k]√
αI

]+ [
e[k]
0

]
(10)

The complexity of this operation is of O(n3), where n is
the number of columns of J , i.e. the number of antecedent
parameters in the fuzzy system.

V. CONSEQUENT LEARNING

For consequent learning we exploit least squares and
alternatively, in the case of an incremental online learning
scheme we use the recursive least squares [18] approach. This
is feasible as the consequent parameters in (4) are linear ones
and therefore the mean squared error optimization problem
can be solved analytically and globally. Principally there are
two possibilities for linear consequent learning [19]:

• Global Learning: all C normalized membership func-
tions (each one belonging exactly to one rule) are
joined together in one regression matrix, hence the
complete parameter vector �w representing all linear
consequent parameters in all rules is optimized. Thus,
the optimization problem is defined as

J =
N∑

k=1

(y(k) −
C∑

i=1

liΨi(�x(k)))2 = min
�w

! (11)

and the solution given by

�̂w = (RT R)−1RT �y (12)

where R the regression matrix containing the regressors

�ri(k) = [Ψi(�x(k))x1(k)Ψi(�x(k)) . . . xp(k)Ψi(�x(k))]

for all C rules and k = 1, . . . , N data points, where
xi(k) is the ith column of the row vector �x in point k.

• Local Learning: Each rule is treated separately and the
corresponding linear consequent parameters are opti-
mized in a weighted least squares approach, where the
weights contain the normalized membership functions.
Thus, the optimization problem for the ith rule is
defined as:

Ji =
N∑

k=1

Ψi(�x(k))e2
i (k) = min

wi

! (13)

where ei(k) = y(k) − ŷi(k) represents the error of the
local linear model in the kth point as �̂yi = Ri �wi with
Ri the original data matrix with only ones in the first
column. The solution is given by:

�̂wi = (RT
i QiRi)−1RT

i Qi�y (14)

with Qi the weighting matrix

Qi =

Ψi(�x(1)) 0 ... 0
0 Ψi(�x(2)) ... 0
...

...
...

...
0 0 ... Ψi(�x(N))

From various analytical and empirical examinations local
learning turned out to be superior to global one in a lot of
aspects such as numerical stability (as dealing with inversion
of smaller matrices), computational performance, the bias
error when approximating from data with medium and high
noise levels and transparency of the consequent functions
(hyper-planes). The latter aspect is due to an observed
snuggling of the linear hyper-planes along the approximating
surface [20]. This entails well interpretable insight for local
control behaviors and opens the possibility to gain reasonable
error bars and confidence intervals directly from the hyper-
planes.

In the case of adaptation of all the fuzzy systems in the
population to new incoming points, consequent learning in
incremental manner can be performed by using recursive
least squares [18], which possesses the favorable property
that it converges to the global optimum within each iteration
step. This is carried out for each rule separately as the local
learning approach is applied:

�̂wi(k+1) = �̂wi(k)+γ(k)(y(k+1)−�rT (k+1) �̂wi(k)) (15)

γ(k) =
Pi(k)�r(k + 1)

1
Ψi(�x(k+1)) + �rT (k + 1)Pi(k)�r(k + 1)

(16)

Pi(k + 1) = (I − γ(k)�rT (k + 1))Pi(k) (17)

with Pi(k) = (Ri(k)T Qi(k)Ri(k))−1 the inverse weighted
inverse Hesse matrix and �r(k + 1) = [1 x1(k + 1) x2(k +
1) . . . xp(k +1)]T the regressor values of the k +1th data
point, which is the same for all i rules.

In order to ensure stable matrix inversion a regularization
parameter α > 0 is incorporated in the case of badly
conditioned matrices into the optimization function:

Ji =
N∑

k=1

Ψi(�x(k))e2
i (k) + α �wi

T �wi = min
�wi

! (18)

The regularization parameter α > 0 controls the balance
between fitting the data and avoiding the badly conditioned
Hesse matrices RT

i QiRi leading to the following solution
for the local learning approach:

�̂wi = (RT
i QiRi + αI)−1RT

i Qi�y (19)

where I is a (p + 1) × (p + 1) identity matrix. From these
two estimation formulas it is obvious that a large α leads
to numerically stable estimation but to incorrect parameter
estimations resulting in a high bias error. Hence, in practice
the following strategy for estimation of linear consequents
for the ith rule is a good choice:

1) Compute RT
i QiRi

2267

2) Compute the condition of RT
i QiRi, by applying a sin-

gular value decomposition and using the well-known
formula cond(RT

i QiRi) = λmax

λmin
, where λmin and

λmax denote the minimal and maximal eigenvalue of
RT

i QiRi.
3) If cond(RT

i QiRi) > threshold, the matrix is badly
conditioned, hence do the following

a) Choose α in a way, such that the condition of
RT

i QiRi gets smaller than the threshold but not
too small due to the considerations above. This
can be accomplished by exploiting the fact, that
the addition of αI to RT

i QiRi influences the
small eigenvalues strongly leading to the approx-
imation formula cond(RT

i QiRi) ≈ λmax

α , hence
if desiring a condition of threshold/2, α can be
approximated via

α ≈ 2λmax

threshold

b) Perform the ridge least squares as in (19)

4) Else, apply weighted least squares approach as in (14)

Note: Setting the threshold can be carried out from experi-
ence with badly conditioned matrices or simply by stepwise
trying out from which condition level on the inverse leads
to instable results. The same procedure can be applied for
recursive least squares, whenever the condition of Pi(k) gets
too high.

VI. EVALUATION

In this section an example has been used to test the
performance of the proposed algorithm. We refer to our
hybrid method as Bac-LM-CL, where for the different
variants (i.e. different choices of fuzzy sets, t-norms and
fitness functions for individuum selection) we use the
following notation:
Bac-LM-CL var1a = Bac-LM-CL with Gaussian sets,
product t-norm and MSE (7) as fitness function
Bac-LM-CL var1b = Bac-LM-CL with Gaussian sets,
product t-norm and in-sample error (6) as fitness function
Bac-LM-CL var2a = Bac-LM-CL with trapezoidal sets,
minimum t-norm and MSE (7) as fitness function
Bac-LM-CL var2b = Bac-LM-CL with trapezoidal sets,
minimum t-norm and in-sample error (6) as fitness function

The test is based on an artificial data set generated by the
following non-linear six-dimensional function:

f(�x) = x1 + x
1
2
2 + x3x4 + 2e2(x5−x6) (20)

where x1 ∈ [1, 5], x2 ∈ [1, 5], x3 ∈ [0, 4], x4 ∈ [0, 0.6],
x5 ∈ [0, 1], x6 ∈ [0, 1.2]. The task is to approximate this
function as close as possible while not to overfit. Hence, the
complete data set of 400 data points were randomly split
into a training and a test data set. The latter was used to
calculate the mean squared error (MSE) as approximation
of the generalized prediction error. In fact, a 10-fold cross-
validation [21] leads to even more accurate values for the

TABLE I

COMPARISON OF FUZZY MODELLING METHODS ON NON-LINEAR

6-DIMENSIONAL DATA

Method MSE No. of Rules
Test

FMCLUST 1.31 10
ANFIS 0.71 64
genfis2 1.38 18
genfis2 ext. 0.68 14
FLEXFIS 1.09 17
Bac-LM-CL var1a 1.06 10
Bac-LM-CL var1b 1.15 10
Bac-LM-CL var2a 1.33 10
Bac-LM-CL var2b 1.38 10

generalized prediction error, but quite often a unique split is
sufficient for a performance comparison between modelling
methods. Table I compares the well-known and in MATLAB
toolboxes available methods ANFIS [22], FMCLUST [12]
and genfis2 [4] with the extended version of genfis2 by
using a modified version of vector quantization as cluster-
ing method [23] and local learning for estimating the rule
consequent functions and with FLEXFIS [13], an incremental
version of genfis2 extended, which builds up the fuzzy system
on a sample per sample basis (and hence applicable for
fast online identification tasks). For each method different
settings of the most essential parameters were carried out
and the best settings were taken and stated in Table I. In
our algorithm the number of generations was set to 40, the
number of individuals is 10. The parameters of the bacterial
operators were 8 clones and 4 infections. The length of the
bacterium (so, the number of rules) was set to 10, thus we
can compare which one of the four variants gives the best
result. From Table I it can be seen that our approach provides
a good solution for the problem. If we compare our method
with the results obtained by the other approaches we can see
that we can get lower MSE values with fewer rules in most
of the cases. The genfis2 extended method gives a low MSE
value, however it uses more rules. Our technique converges
to the lowest possible solution. If we increase the parameter
values then better results can be obtained. Comparing our
4 variants we can see that the fuzzy rules with Gaussian
membership functions are better. The first reason for this
is that when Gaussian sets are applied then there is no
gap in the rule base. Because we do not use interpolative
reasoning, in the trapezoidal case there can be gaps in the
rules causing some abnormal inference output on this way.
The other reason for the better outcome by the Gaussian sets
is that in the Levenberg-Marquardt step the gradient values
carry more information than the trapezoids, because the latter
have constant parts in the memberships. We can also see that
for fitness value calculation the classical MSE (7) provides
a better outcome than the so-called in-sample error (6).

VII. CONCLUSION

A new technique for Takagi-Sugeno fuzzy rule base op-
timization was introduced in this paper. The bacterial algo-

2268

rithm was combined with the Levenberg-Marquardt method
to optimize the nonlinear antecedents’ parameters. Separately
for the consequents parameters, a least-square method was
proposed.

ACKNOWLEDGMENT

Research supported by the Australian Research Council,
the Széchenyi University Main Research Direction Grant
2005, and a National Scientific Research Fund Grant OTKA
T048832.

REFERENCES

[1] J. Botzheim, B. Hamori, L. Kóczy, and A. Ruano, “Bacterial algorithm
applied for fuzzy rule extraction,” in Proceedings of the International
Conference on Information Processing and Management of Uncer-
tainty in Knowledge-based Systems, IPMU 2002, Annecy, France,
2002, pp. 1021–1026.

[2] N. E. Nawa and T. Furuhashi, “Fuzzy system parameters discovery
by bacterial evolutionary algorithm,” IEEE Trans. on Fuzzy Systems,
vol. 7, pp. 608–616, 1999.

[3] M. Burger, J. Haslinger, and U. Bodenhofer, “Tuning of fuzzy systems
as an ill-posed problem,” in Progress in Industrial Mathematics at
ECMI 2000, ser. Mathematics in Industry, M. Anile, V. Capasso, and
A. Greco, Eds. Springer, 2002, vol. 1, pp. 493–498.

[4] R. Yager and D. Filev, “Generation of fuzzy rules by mountain clus-
tering,” Machine Intelligence Institute, Iona College, New Rochelle,
NY 10801, Tech. Rep. MII-1318R, 1994.

[5] D. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” SIAM J. Appl. Math., vol. 11, pp. 431–441, 1963.

[6] A. Ruano, C. Cabrita, J. Oliveira, L. Kóczy, and D. Tikk, “Supervised
training algorithms for B-spline neural networks and fuzzy systems,”
in Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS
International Conference, 2001.

[7] J. Botzheim, C. Cabrita, L. Kóczy, and A. Ruano, “Estimating fuzzy
membership functions parameters by the Levenberg-Marquardt algo-
rithm,” in Proceedings of the IEEE International Conference on Fuzzy
Systems, FUZZ-IEEE 2004, Budapest, Hungary, 2004, pp. 1667–1672.

[8] ——, “Fuzzy rule extraction by bacterial memetic algorithm,” in
Proceedings of IFSA 2005, Bejing, China, July 2005, pp. 1563–1568.

[9] L. Wang, “Fuzzy systems are universal approximators,” in Proceedings
of the IEEE International Conference on Fuzzy Systems, 1992, pp.
1163–1169.

[10] J.-S. Jang and C.-T. Sun, “Functional equivalence between radial
basis function networks and fuzzy inference systems,” IEEE Trans.
on Neural Networks, vol. 4, pp. 156–159, 1993.

[11] L. Kóczy, D.Tikk, and T. Gedeon, “On functional equivalence of
certain fuzzy controllers and RBF type approximation schemes,”
International Journal of Fuzzy Systems, 2000.

[12] R. Babuska, Fuzzy Modeling for Control. Boston: Kluwer Academic
Publishers, 1998.

[13] E. Lughofer and E. Klement, “FLEXFIS: A variant for incremental
learning of Takagi-Sugeno fuzzy systems,” in Proceedings of FUZZ-
IEEE 2005, Reno, Nevada, U.S.A., 2005, pp. 915–920.

[14] J. Holland, Adaption in Natural and Artificial Systems. Cambridge,
Massachusetts: The MIT Press, 1992.

[15] E. Ruspini, “A new approach to clustering,” Information and Control,
vol. 15, pp. 22–32, 1969.

[16] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference and Prediction. New York, Berlin,
Heidelberg, Germany: Springer Verlag, 2001.

[17] P. Werbos, “Beyond regression: New tools for prediction and analysis
in the behavioral sciences,” Ph.D. dissertation, Appl. Math., Harvard
University, USA, 1974.

[18] L. Ljung, System Identification: Theory for the User. Upper Saddle
River, New Jersey 07458: Prentice Hall PTR, Prentic Hall Inc., 1999.

[19] J. Yen, L. Wang, and C. Gillespie, “Improving the interpretability of
TSK fuzzy models by combining global learning and local learning,”
IEEE Trans. on Fuzzy Systems, vol. 6, no. 4, pp. 530–537, 1998.

[20] E. Lughofer, E. Hüllermeier, and E. Klement, “Improving the inter-
pretability of data-driven evolving fuzzy systems,” in Proceedings of
EUSFLAT 2005, Barcelona, Spain, 2005, pp. 28–33.

[21] M. Stone, “Cross-validatory choice and assessment of statistical pre-
dictions,” Journal of the Royal Statistical Society, vol. 36, pp. 111–147,
1974.

[22] J.-S. Jang, “ANFIS: Adaptive-network-based fuzzy inference systems,”
IEEE Trans. Syst. Man Cybern., vol. 23, pp. 665–685, 1993.

[23] E. Lughofer and U. Bodenhofer, “Incremental learning of fuzzy basis
function networks with a modified version of vector quantization,” in
to appear in Proceedings of IPMU 2006, Paris, France, 2006.

2269

